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J. Phys. A: Math. Gen. 13 (1980) 1075-1093. Printed in Great Britain 

Non-stationary thermodynamics of polarisable and 
magnetisable dissipative fluid media 

Miroslav KranySt 
Departemen! de Physique, Universite de Montreal, Montrkal, Canada 

Received 22 May 1978, in final form 19 June 1979 

Abstract. A phenomenological theory is proposed of a charged, streaming N-component 
mixture of dissipative fluids which are polarisable and magnetisable and whose governing 
equations form an hyperbolic system. Non-stationary transport equations are proposed for 
dissipative fluxes containing new cross-effect terms, as required for compatibility with the 
entropy principle expressed by a new balance equation (including a new Gibbs equation). 
The theory formed by the set of (1311'+7) equations governing the material behaviour of 
the system, by generalising the constitutive equations of a quasineutral media, together with 
Maxwell's equations, may be referred to as t?re electrodynamics of dissipative, streaming 
media. Proposed transport laws for polarisation and magnetisation generalise the well- 
known Debye law for relaxation, and show the possible influence of temperature and 
density gradients on polarisation and magnetisation. The forms of the free energy and of the 
Gibbs function, in the non-stationary regime, are also formulated. 

1. Introduction and formulation of the problem 

During the last two decades a non-stationary thermodynamics has been developed, 
generalising the traditional non-equilibrium thermodynamics, which is stationary since 
it neglects, among other things, inertial effects of dissipative fluxes. Such a 'stationary 
theory' has only a limited range of validity and is in fact inadequate for a description of 
certain fast transition processes, such as wavefront motion. The aim of this paper is to 
show how non-stationary thermodynamics of fluids in the version given by Miiller 
(1967), confirmed and complemented by Israel (1976) and generalised to elastic media 
by KranyS (1977a, b), can be extended to polarisable and magnetisable multifluid 
dissipative systems. 

We want to study an electromechanical system consisting of a charged, streaming 
N-component mixture of dissipative fluids which is polarisable and magnetisable and 
which is not far from thermodynamic equilibrium. In the state of thermodynamic 
equilibrium, the fluid mixture is supposed to be isotropic, electrically neutral (6 = 0), 
not polarised or magnetised (P' = M '  = 0) and therefore not subject to an electromag- 
netic field. This electromechanical system, in which thermodynamic dissipative pro- 
cesses are operative is, as a whole, taken to be a closed system, in the sense that 
conservation of linear momentum, angular momentum and energy within it will obtain. 
From this requirement it follows, for example, that the pressure tensor of the mixture 
has to be symmetric (T - T ). For the description of the electromagnetic field, the 
vectors E' and B' are regarded as basic, so one has to include within the vectors D' and 
H' any effect due to the presence of matter (cf Born and Wolf (1970) p 1). 

j k l  - * lk 

f Present address: 4854 CGte des Neiges 502, Montreal H3V-lG7, Canada. 
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1076 M Kran y i  

In this paper we want to consider our system as a non-relativistic one, which allows 
us to simplify slightly the formulae of electrodynamics in order that the whole theory 
conforms to 'Galilean relativity' (cf Penfield and Haus (1967) p 57). The relativistic 
theory is, no doubt, the only one physically strictly consistent for our case, and we will 
present this formalism in a later paper. (See note added in proof). 

As we do not want to omit non-stationary phenomena from our description, we will 
investigate our system on the basis of non-stationary thermodynamics (applicable for 
the states of the system not far from thermodynamic equilibrium). The method of 
derivation of the transport equations is the same as in ordinary irreversible ther- 
modynamics (which we call stationary thermodynamics). The only difference is that the 
non-stationary theory is based on a more general assumption, which allows the entropy 
density function s and also the entropy flux 9' to be dependent on the ordinary 
non-dissipative variables as well as on all dissipative fluxes. This results in a generalis- 
ation of the entropy balance equation where all terms of order two, 0(2), are 
systematically retained. 

The ordering of quantities is to be understood in the following way. All quantities in 
thermodynamic equilibrium which do not vanish are considered to be O(0); we consider 
all quantities to be 0(1) ,  which vanish at equilibrium together with all their space and 
time derivatives. Therefore, we always (see table 1) have 

of O(0) (1.1) 

3 zk', i', E', P', . . . and p ,  a'T, a'3 . . . of O(1). (1.2) 

As an example, one has to ascribe different order to v '  and B' depending on whether 
one supposes that, in thermodynamic equilibrium, the fluid velocity and magnetic field 
(A) do not vanish or (B) do vanish. 

I:;;;- In case { :t; v i  and B' are of order 

At  the beginning we will admit (for heuristic reasons) the validity of alternative (A), 
but later we will limit ourselves to case (B) which means that the medium studied is 
immobile and isotropic (except for linear ('infinitesimal') perturbations)?. Because of 

Table 1. Nomenclature used in this paper. We use SI units. 

c = p / p  = mass fraction 
A A  

Pi = ( p  + r 1 6 ~ ' +  rk' =pressure tensor 

rk' =shear viscous stress 
7~ =bulk viscous stress 

w -  sco)T = chemical potential g'"'=, A 

U' =fluid mixture velocity 
U = (specific) internal energy 

9' = p( U' - 0') diffusion flux 

q' =heat  flux 
A A  

A 

h' = q' - w Q '  = heat flux 

y = z + g / g = e n t h a l p y  
A A A A  

J '  = I '  -;U' =conductive current 
p' = free charge density 
P' =polarisation (density) 

M' =magnetisation (density) 

z = e / m  = specific charge 

U = l / p  =specific volume 
A A A  

f If one admits that B"o'#O, its value must be sufficiently small for the anisotropy of the system in its 
equilibrium state, induced by B"", to be negligible. 
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the quasineutrality requirement, E' will always be O(1). This procedure of 
classification, and restriction of the basic equations so as to represent the first and 
second principles systematically only up to terms of O(2) leads, in the end, to a 
linearised form of the transport equations for dissipative quantities which describe 
therefore an 'infinitesimal' departure from the thermal equilibrium state. 

We assume further that the total pressure tensor is symmetric, IT = IT , and can be 
expressed as a sum of reversible or recoverable pressure p a k 1  and an irreversible or 
dissipative part i.e. a viscosity tensor Ilk': 

(1.4) 

(1.5) 

* kl  * lk 

1 k k  
T k i  = p p  +pi, = &k' + = n l k ) ,  IT=3n , 

I T k l  = ( n k l ) ~ ~ ( n k ' + n ' k ) - 4 s k l n s 3 ,  I T k k  = 0 ,  IT * kl - -; t k l .  

We also assume that the polarisation and magnetisation density vectors can be 
represented as a sum of reversible Pk, MA and irreversible P:, M i  parts: 

Both parts are considered to be O(1). 
Before starting on our thermodynamic development, let us write down the conser- 

vation laws for the components and for the total system as well as the equation of 
motion for the material medium in their standard form, namely 

Pi = P i  + P i ,  M ' = M f ,  + M i .  (1.6) 

k* k l  - pdv ' /d t+a  IT - p F ' = C p F ' ,  
A AA 

where the ponderomotive force acting on the polarised system (see de Groot and Mazur 
1962, equation (XIV, 17)) is 

d l  
dt 

pF' = F E ' + ( I  A B ) '  + P k  aiEk + M k  a'Bk +p- -[(PA B)' - E ~ / L ~ ( M A  E ) ] .  (1.9) 

2. Construction of entropy balance equation 

The constitutive assumptions may be summarised in the following way. In non- 
stationary thermodynamics, one does not alter the first principle and we will write it for 
the case of a conducting fluid with polarisation (density) Pi and magnetisation (density) 
M' in the form? 

+ The thermal energy balance equation in the form (2.1) has been given by de Groot and Mazur (1962) 
(equations XIV, 39) with Abraham's definition for the momentum density, GAb =  EO^& A H )  = c - 2 s A b .  

The 'Minkowskian' choice GM, = ( D  A B )  ultimately leads to identical terms in the RHS of equation (2.1), 
agumented by some other terms which disappear in an approximation we will use later. However, in this 
second case c2GM, # SM, = ( E  A H ) ,  which really is not a defect, as it need not necessarily destroy the 
(relativistic) angular momentum balance of the whole e!:ctromechanical system taken together (cf Penfield 
and Haus (1967) p 241 or Moller (1952) p 205). Equation (2.1) is also used by Penfield and Haus (1967) (cf 
equation (4.168)) which is in reality the first law if one replaces ne(d/dt)(s/n) by -akqk. An equation of the 
type (2.1) is consistent also with equation (11.217) of de-Groot and Suttorp (1972) with slightly different terms 
describing the effect of magnetisation, but which may be transformed to a form identical with our equation by 
substituting pu for p u  +M'B". 
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The primed quantities may be interpreted as transforms of the unprimed ones (which 
are related to the local fluid co-moving frame) according to the sipplified Lorentz 
transformation. The specific internal energy U, a standard quantity occuring in a 
statement of the first principle, as in conventional thermodynamics, possesses certain 
important distinguishing characteristics. It is a state function, that is, it is independent 
of the process followed in changing the state of the medium. We may say that the 
(specific) internal energy is a function only of chosen independent (non-dissipative) 
state defining variables like the specific volume U == p - l ,  temperature T, mass fractions 
c, and the reversible part of the polarisation and magnetisation vectors Pb', Mb'. As the 
equations of state for the reversible polarisation and magnetisation in isotropic media 
we adopt the well-known, simplest constitutive relations? 

A 

1 
CCO 

(2.3) Pb' = EOKOE" M" 0 --,yoB". - 

On the other hand, in non-stationary thermodynamics, we write the second prin- 
ciple as 

which is a statement of the entropy balance equation and of the Clausius-Duhem 
inequality, and we have to retain explicitly all terms to order two. 

Such a requirement can be satisfied by the two constitutive assumptions ((a) and (b)). 
(a) The (specific) entropy s, as one of the three new quantities (s, Y', U )  appearing in 

the fully independent intrinsic second principle (2.4), in a thermal. non-equilibrium 
state, depends explicitly, not only on the usual variables (U, c, U, PA, MA) for the 
description of reversible processes, but also on the dissipative fluxes characterising 
irreversible processes ( h  I ,  Q', T, rk', P t 9  M t  ), as it must also describe the irreversibility 
of non-equilibrium processes. Therefore 

p dsldt + d'Y' = CT, CT30 (1 = 1, 2, 31, (2.4) 

A 

A A A A  

s = S(U*, U, 2, Pb', Mb'l$ i', 2 zkl, PY, M Y )  

. s* = S(U*, U, 2, PI', Mb'10, 0 ,  . . . ). 

( A  = 1 ,2 , .  . . N ) $  (2.5)  

which is different from its reversible equilibrium value 

(2.6) 

According to thermodynamics the reversible (specific) entropy s* is, for a system in 
equilibrium, a well-defined function of the various independent parameters (natural 
variables) which are necessary and sufficient to specify the thermodynamic state. For 
the considered multicomponent system we may choose as natural variables U, U, c, Pb', 
and Mh' : 

A 

s* = s*(u*, U, 5, Pb', Mb'). (2.7) 

t Detailed analysis shows that if the considered material medium is 'linear' isotropic and non-gyrotropic, and 
piezo-effects are neglected, then a pyro-effect would also disappear ,  and we find the constitutive equations 
(2.3). As thermodynamics does not say anything about the functional form at state equations except that they 
have to satisfy certain stability conditions, equations of state must be determined either empirically or 
theoretically by statistical mechanics. 
$ We consider formally P" and M" (as well as E" and I?") as a new vector field replacing P', M', E' and B'.  
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The differential equation determining the evolution of this function is the Gibbs 
relation, which, in the form containing a convective time derivative, stipulates the 
existence of local thermal equilibrium in a small moving mass element in streaming 
media. The Gibbs relation in the one-component system can be obtained from the first 
law (2.1) by the replacement 4 ' q '  + pT ds,/dt, and by neglecting all dissipative 
variables, this leaves 

where we drop O(3) terms. For a multicomponent system, by a straightforward 
generalisation of equation (2.8) with the inclusion of additional state variables c 
characterising the mass content of components, we find A 

and thereby also the relations familiar from equilibrium theory, 
( 0 )  

';4 _-  as* - -- as, 1 
du* T '  av T '  aC T '  

-=- as, P 
I 

A 
(2.10) 

by associating (and defining) the thermodynamically conjugate quantities 
(T,  p ,  2, E", B")  with the original natural variables. 

To find the appropriate generalised Gibbs equation valid for both reversible and 
irreversible changes we take the derivative of equation (2.6), 

(2.11) 

A A A A 

and we also require that the dependence of s and U on the variables describing the 
reversible processes be the same as in reversible thermodynamics (i.e. as in equation 
(2.10)): 

as -as* p as -as, I 
au au T '  av av T '  

as as !2 -.=--?i.,-- 
ac ac T '  T 

---I=- - - -  

(0) (2.12) 
as. VB" 

T '  
-- as VE" -- aMA dP:, -- - - 3 

A A  

As we are concerned with an isotropic and non-gyrotropic medium, (in the non- 
perturbed equilibrium state?) where dissipation effects, as a small perturbation, may 

? If one admits that B"" Z 0, its value must be sufficiently small for the anisotropy of the system in its 
equilibrium state, induced by B"", to be negligible. 
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take place, s may alternatively be expressed as a function of (isotropic) invariants of 
dissipative fluxes, so we can also write, instead of equation (2.5), 

Expanding s in a Taylor series about the reference state s(u* ,  U, c,  Pb', Mh'lO, 0, . . . ) = 
s*, to order two in the dissipative fluxes, gives A 

(where we have denoted (ds/aF'B'), = -(1/2T)9(u,  U, 2) etc. We then find 

A A A 
(2.15) 

1 -- ---AMY. as 1 as -- as 1 _-  ---KT, ---Apt, a~ T A A  aP:' T p  aM:' T p  
A 

The essence of the second principle is the statement that the entropy of an insulated 
system can only increase with time, i.e. 

s -s* 3 s+ c 0 (2.16) 

for an arbitrary combination of Q', h', T,  Tk',  P:' and My.  We may conclude therefore 
that since Q'Q' 3 0, T 2 2 0 .  . .) 

A A A A  
kl kl 

A A  

F> 0, E>O, A fp 0, A > O ,  A>O. (2.17) 
A 

G >  0, 
A 

Making use of relations (2.11), (2.12), and (2.15) we obtain the Gibbs equation for 
non-stationary processes which reads 

(2.18)$ 

One notices that only the two first terms on the right-hand side are of 0(1) while the 
remaining terms are of O(2). Equation (2.18) is in several respects a generalised form of 
the Gibbs relation utilised in stationary irreversible thermodynamics (cf de Groot and 
Mazur (19621, equation (XIV 59)). 

(b) The conductive part of the entropy flux 9'' (see equation (2.5)), according to 
conventional irreversible thermodynamics, is proportional to only two kinds of dis- 
sipative fluxes, i.e. heat flux and diffusion fluxes, which causes 9" to be of O(1). Only if 
I Other invariants like for example, rk'PkM1 were not considered as being O(3). 

$ Where S =ds/dt  =as/& + v 'd 's .  Equation (2.18) for the case P" = M" = 0 was derived by Kranyg (1968). 
A 
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terms of O(2) are included is one able to combine all the dissipative fluxes in a vector of 
entropy flux. Thus a generalised definition of 9" may be given as (2' = 2 ' -  wQ') 

A A  

h l - N r h l - M r k l h k - R r  kl Q k -l'zkli: 
A A A A  A A  A A A  A 

(2.19) - kl k -PT y +  
AA 

where 

scO)T= w - p  
( A  A A 

i f ,  =dP:'ldt, y :  = dM:'/dt 

are polarisation and magnetisation currents (up to O(1)) which must be involved in 9' 
rather than P:' and M?, and where p, P, N, M, . . . , Cr are scalar coefficients which may 
be O(O), i.e. dependent on p, c and T only. 

A A  A 

A 

3. Derivation of transport equations 

The new coefficients 2, 5, 5, $, A, A, y, A$ 2, c, z, y, 2 2, /3 and appearing in 
in equations (2.18) and (2.19) and characterising the state of the medium have to 
conform with the phenomenological transport equations which lead to the non- 
negative entropy production cr b 0. In other words, the transport equations for 
dissipative fluxes can be deduced from equation (2.4) and the preceding equations by 
the supposition that cr is a quadratic form of the dissipative fluxes, which guarantees the 
condition (T 2 0 by imposing conditions of inequality on the coefficients occurring in this 
quadratic form. The first law (2.1), because of equation (1.4) and q1 = h'+% ,wg', 
can be written as 

p(ri + p z j )  + p ~ d  + rkl akvl  + a'h' + (3.1) 

Upon combining the entropy balance equation (2.4) with equations (2.18), (2.19), 

Q' a'w + 1 w alQ1 = J'E" + i'E" + y 'B". 
A A  A A A  A 

(1,7)1, and (3.1) and retaining only terms to 0(2), and using the relations 

J' = zQ', 
A A A  

and the 'subsidiary' condition 
pa ' i :+pay+=o - 1 1  

(3.2) 

(3.3) 

which is satisfied, for example, in the case of absence of charge-density time variation 

al i i  = 0 ,  a$!+ = 0, T(3.4) 

t This is equivalent to a'P: = & = 0, known as the 'transversality condition'. 
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one obtains 

(3.5) 

In order to reduce UT to a quadratic form one has to set 

U' = 1 C(O)Q', . . . )  Y' =cy:. 
AB B 

These relations, together with an explicit form for y', y', . , . , represent just the 
transport equations for dissipative quantities which we are seeking: 

pK++pd +Nd'h' + y d'Q' + a di: + CU d ' y i  = -1 C'"' r r= - V, (3.9) 
A A  A A A  A A B A S  B A 

(3.10) 

(3.11) 

One sees that cross coupling terms, e.g. between bulk viscosity and heat flux (n, h ' )  in 
equations (3.7) and (3.9), contain the same coefficient, namely N(symbolical1y written 

$'[rr, h '] ) .  This kind of symmetry exists also for other pairs of dissipative quantities, 
namely 

A 

M[h'.rrk'], 
A A A  

N h ' ,  V I ,  
A A  dQ ' ,  T I ,  R[Q', A A ~ ~ ' 1 ,  A A  A 

(3.12) 

{[zki,  j k l ,  gz xi:, $2 {'I, %[T y'1. 
However, in order to preserve the hyperbolicity of the governing equations we have to 
set 

P=O, P= 0 ,  f f = u ,  cr = 0, 
A A A A 

(3.1 3) 

as can be verified by investigation of various specialised and simplified cases of our 
system. This can also easily be seen if one realises that the necessary condition for the 
system of differential equations such as (3.6)-(3.11) to be hyperbolic is that the highest 
time and space derivatives in each equation have to be of the same order. This is not the 
case with equations (3.8) and (3.9) where, for example, the term a a'i' is in reality 
a a' dP"/dt, because the associate equation (3.10), according its structure, represents a 
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transport equation for Pf' rather than for i'. Equations (3.6)-(3.11) can be further 
simplified. Taking into account the Gibbs-Duhem equation to 0(1) (see (Al . l l ) ) ,  

and the fact that the summation of the diffusion transport equations (3.6) multiplied by 2 
must lead to the equation of motion of the whole material system, (1.8), one can easily 
see that because of (1.5) the coefficients must satisfy the relation 

p R = l ,  PY = 1, C'Q'Q' = 0. (3.15) g A A  A A  A B A B  B 

Also we introduce the relaxation coefficients for polarisation m d  magnetisation, 

r p  = C/A E o K + C ,  TM = = x+( 1 /FO)c. (3.16) 

Because of equations (3.13), (3.14), (3.15) and (3.16), equations (3.6)-(3.11) can be 
written as 

(3.18) 

1 
7 j k ' + -  (akv')+M(akh')+R(akQ')) =--E C(')T'', (3.19) 
A PE ' (  A A A A  p? B AB 

A 

(3.20) 

(3.21) 

(3.22) 

This set of phenomenological equations we call the transport equations for our system. 
The right-hand side terms (in kinetic theory, these are called collision terms) represent 
transfer of corresponding quantities between the 'particles' of the A-component and 
the remaining components. Our procedure for obtaining the linearised transport 
equations was based on the use of the entropy balance equations which is insensible to 
reversible or non-thermodynamic motion (processes) inside the system. Now the 
diffusion equation (3.17) occupies a special position in the sense that it plays two roles: it 
is simultaneously an equation of motion of the A-component of the mixture and 
therefore a 'mechanical' equation, but, also, it is the equation of diffusional transport 
and therefore a 'thermodynamic' equation. This double ro!e does not exist in a 
single-component system, for example. Our purely thermodynamic algorithm is not 
capable of predicting the mechanical non-stationary term pzj' in equation (3.17), but we 
have added it as the equation obtained by summing (3.17) over A can also be derived 
from equations (1,8), (1.7), (1.5), 2 c = 1 and 2 Q' = 0. Conversely, by summation of 

A A  A A  
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equation (3.17) over A,  one easily obtains the overall equation of motion for the 
mixture (1.8). 

Substituting the quantities FJ', y', . . . , Y' defined by equation (3.6) through (3.11) 
into (3 .3 ,  we find 

N N  

A B  A B  A B A B  A B  A B  A B A B  A B  
gT = 1 1 ( C'Q'Q'Q' + C'h'h 'h' + C ( ' ) T ~ ' T ~ '  + + Ciii: + c y : y : .  (3.23) 

To ensure the validity of the condition aT 3 0, four ( N  x N )  matrices formed from the 
coefficients C'Q', C'h', . , , and two coefficients C and c must be positive definite, 
which, written symbolically, reads 

A B  A B  

(3.24) 

4. Constitutive equations for polarisation and magnetisation 

Relations (1.6) also lead to a resolution of the electric displacement and magnetic 
vectors 

D" = EOE" + P", H" = (l//Lo)B"-M" (4.1) 

into reversible and irreversible parts, namely 

D" = (EOEI' + Ph') + P:' = 0;' +D:', 
(4.2) 

H" = -Bf' 1 - M '  - M f '  =Hb' +Hk 0 )  + - +. 
( / L O  

The standard constitutive equations for polarisation and magnetisation used for 
so-called 'linear media' are already described by the reversible relations (2.3)T. On the 
other hand, the transport equations (3.21) ((3.22)) governing the behaviour of P:' 
(M:) ,  and which may include eventually the new coupling with density and tempera- 
ture gradient, are well known as Debye's (1929) relaxation laws. 

The generalised constitutive equations for total polarisation, for example, can be 
found if we write down the explicit expressions for Pt + P:' according to equations (2.3) 
and (3.21): 

f However, it must be admitted that, generally, the reversible polarisation (and magnetisation) is not 
necessarily a linear function of E' but some more general function, P ' = f ( E ' )  say, and what we have in 
equation (2. 3) is only the first term of a Taylor expansion about the equilibrium value of E' (which we 
suppose to be zero), namely PI= (df/dEh)(E'-Eb)+. ' . This is due to our linearisation procedure. 
Derivation of the function f ( E ' )  would require a dynamical analysis at the microscopic level. The same 
applies to the other equations of state. The most one is able to do in aphenomenological theory is to introduce 
the (Taylor) coefficients in series expansions of such functions. 
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or also taking into account equation (4.12) (PL = D;), 

Setting T~ = 0 and B = 0 reduces these equations to the standard constitutive equations. 
Similarly to the resulting stress-strain relation (KramyS 1977a, equation (2.25)), in 
equations (4.3) and (4.6) only the dissipative part of the transported quantity is relaxed. 
The third basic constitutive equation of electrodynamics, the generalised Ohm law, can 
be deduced from the transport equation (3.17) (see Q 6). 

Equation (4.3) for p = 0 and Pb' = 0 reduces to the form which is well known as 
Debye's relaxation law. Debye (1929) originally distinguished two classes of mole- 
cules: class I (non-polar molecules), containing molecules exhibiting only a weak 
polarisability which is due to its shape distortion (or deformation) and is independent of 
temperature, and class 11 (polar molecules), containing molecules having permanent 
electrical moments and exhibiting strong polarisability due to orientational effects and 
which is sensitive to temperature. However, Debye later accepted as more general and 
realistic the coexistence of both mechanisms of polarisation. There is an interesting 
similarity with this classification, depending on which way the condition (3.3) is fulfilled. 
The choice p = p = 0 leads explicitly to the temperature-independent laws (3.21) and 
(3.22) which would describe only non-polar molecules, while a choice like (3.4) implies 
p # 0, p # 0 and therefore does not eliminate the temperature dependence. Some 
authors (cf Debye (1929), equation (64))t simply identified orientational polarisation 
with P? and deformation polarisation with Pb', which we do not assume here, as we take 
both kinds of polarisation as partly irreversible. 

5. Review of the governing equations of the theory 

The transport equations, mass and momentum conservation equations and energy 
balance equation form the governing equations of the material (non-field) part of our 
system, supposing that two equations of state for U and p are given. In other words, the 
non-field part of the system (where E' and B' are considered as fixed) is completely 
characterised by the following 13N + 7( = N + 1 + 3 N  + 3N + 5N + N  + 3 + 3) unknown 
variables, 

A P (or:), T A 0' (or 97, t', , 7 P?, M?, $(5.1) 

which are completely determined by the non-field equations 

kl 

(1,7)1, (3,1), (3,171, (3,181, (3,19), (3,201, (3,21), (3,22). (5.2) 

Defining the electric displacement D' and magnetic vector H' as in equation (4.1), 
Maxwell's equations determining electromagnetic field variations read 

- 1 (V A B)' - E,,- aE' = - ap' + (V A M)' + J' + bv' (J' = 1 zQ') 
CLO at a t  A A A  

(5.3) 

t For more on the application and derivation of Debye's relaxation formula see e.g. Van Vleck (1927), Van 
Vleck and Weisskopf (1945), Brown (1956). 
$ We do not need to consider P t  and M t  as unknown functions (as for example U and p )  because, due to 
equation (2.31, both can be expressed via the field variables E" and d. 



1086 M Kran ys' 

(V A E)' + aB'/dt = 0 

Eoa'E' = -alp' + 6, d'B' = 0. 
(5.4) 

( 5 . 5 )  

Equations (5.3) and (5.4) are the governing equations for the unknown variables E' and 
B', whereas equations (5.5) are merely auxiliary equations, imposing, as they do, some 
limitation (or constraint) on the field (referred to as field transversality conditions if 
6 = 0 as in our case); they are not true governing equations. 

5.1. Summary 

The quasineutral, polarisable, magnetisable charged N-component dissipative fluid 
mixture (assuming we use the definitions (4.1)) and the equations of state for U and p 
may be described by (13N +7)  material variables (5.1) governed by equations (5.2), 
and, by six field variables E' and B', which are governed by equations (5.3) and (5.4) 
subjected to constraints (5.5). This complete set of equations has to be solved 
simultaneously and may be referred to as the electrodynamics of a quasineutral 
dissipative &id. The constitutive equations in this electrodynamics, involving the 
dynamics and thermodynamics of the material, are formed by (13N + 7)  equations 
generalising the well-known static constitutive material relations of electrodynamics 

1 
PO 

PI' = C O K E ' ' ,  M" = -*B'', J' = AE". (5.6) 

The equations (2.3), (3.21) (or (4.3)) and (3.22) generalise the first two equations of 
(5.6),  and relation (3.17) and J' = zQ' generalise the third equation of (5 .6) .  These 
correspondences are still more evi8:nt if the equations are decoupled, i.e. when 
viscosity and heat conduction are neglected. 

5.2. Hyperbolicity. 

The complete set of (13N+ 13) equations? (or (13N+7)  equations if E' and B' are 
fixed), together with auxiliary conditions and the equations of state, which completely 
determine the behaviour of the system considered, is hyperbolic. This is evident, 
without direct proof, from the fact that each of the (13N + 13) true governing equations 
contains both time and space derivatives of the same order. 

If the matter and field distribution (supposing 6 # 0) is time-independent (i.e. we are 
dealing with a static system), then matter and field are governed by atemporal 
conservation and field equations, while transport equations describing dissipative 
effects are trivial, as in such a case there is no motion and therefore no dissipation, and 
the whole set of atemporal equations may be considered as the limiting case of a 
hyperbolic system describing propagation with zero velocity. However, if some motion 
in the system is assumed so that the dissipation process plays a role, then there must 
exist some non-vanishing time derivatives in the conservation equations ((1.7) (1.8) and 
(2.1)). If in this case we suppress time derivatives in some transport equations, in 
equations (3.18)-(3.20) say, then we obtain a parabolic system similar to the so called 
Navier-Stokes system (although in the NS case some more terms are suppressed) which 
results in infinite wavefront speeds. To preserve the hyperbolicity of the system, no 

t One of the transport equations may still be retained, as Maxwells equations contain the equation of 
conservation of charge. 
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time derivatives (or corresponding relaxation times), must be suppressed. If the 
(electrodynamic) constitutive equations are mutually uncoupled, then the following 
inequality holds for propagation mode phase speed W < 00, even if the relaxation 
coefficients T/, TP, . . . are set equal to zero. This is the case when the conventional static 
constitutive equations are used. 

5.3. Linearisation. 

In this paper the local irreversible thermodynamic process is considered as a linear 
perturbation of the thermodynamic equilibrium state of the identical material element. 
In this sense the thermodynamic description given is linear, the governing equations for 
this process being (3.17)-(3.22) and (2.3). However, the equations describing the 
mechanical motion of mass, (1.7), (1.8) and (3.1), may be used in their non-linear form if 
so desired, at the expense of complexity and the fact that the summed-up transport 
equation (3.17) does not give the complete expression for the non-linear force (1.8). 
The second possibility is that we linearise these equations too, which will cause 
vanishing of the force pF' (equation (1.9)) as well as of the right-hand side in equation 
(3.1) (since we assumed, during derivation of the transport equations, p" = 0, and E' and 
B' to be of O(1)). It should be stressed that the linearisation of the first law, (3.1), 
mentioned above is to be effected only after the transport equations are derived. 

6. Application: two-component model 

The governing equations of the N component system described are rather complex. In 
this section, therefore, we will limit ourselves to a tractable two-component (N = 2) 
model of a charged fluid mixture, in order to elucidate the interpretation of our new 
equations as well as to show some consequences of the generalised equations in some 
simple applications. We will assume, for the moment, formally, Case (A) of (1.3)1. 
Then, instead of two equations (3.17) (A = 1,2)  it is more convenient, for reasons of 
interpretation, to work with another equivalent pair of equations. The first such 
equation we obtain from (3.17) (or 3.6) with 5' =;;[E' + (f A B ) ' ]  by the summation 
over the index A due to the rule (1.5)3. The rcsult is an equation of motion for the whole 
mixture (1.8) with pF'  given by equation (1.9) up to terms of O(1). The condition 
(3.15)4 means that the resulting transfer of momentum due to mutual exchanges 
between components cancels, and requires that 

L 

Due the the relation Z Q' = 0 we have, for the electric current. 
A A  

J: = :QZ' -(:/:).Ti (6.2) 
J ' = t Q [ + z Q ' =  Q'(z-z)=JT I ( l -z /z ) ,  

1 1  2 2  1 1 2 2 1  

In order to obtain the second equation, we multiply equations (3.17) by z and z 
1 2 

t We do this only in order not to lose the similarity to a typical expression although, strictly speaking, we must 
adhere to the supposition designated as case (B) in equation (1.3) and p' = 0 (no limitation need be imposed on 
U'). 
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respectively and add them together. Doing this and making use of equations (6.2), (6.1) 
we find 

where 

(6.4) 

mean respectively: electric dissipative pressure tensor, plasma frequency R, relaxation 
time 7 and electrical conductivity A. Equation (6.3), which is well known in the kinetic 
theory of a plasma (cf Spitzer (3962) equation (2.12), Lust (1959), Greene (1973)), 
represents a generalisation of the static Ohm law, J '  = AE", to which it reduces if one 
limits consideration to stationary piocesses with negligible electrical viscous pressure 
(ak7jk'  --- 0) and Hall current ( T ( z +  z)(J' A B )  = 0). In a similar way instead of variables 

h' and h' one can use h' = 2 h' and k' =I; zh' and derive from (3.7) ( A  = 1,2)  two 
vector equations, one for mechanical and one for electrical quantities. The same 
applies to equations (3.8) and (3.9). In this way we could have one series of mechanical 
variables (and equations) and one series of corresponding electrical variables (and 
equations). Such a symmetry in our description using common quantities for tempera- 
ture, polarisation and magnetisation remains incomplete. 

As far as the expression for the entropy production (3.23) is concerned, we are able, 
because of relations (6.2), (6.1), (6.4) and (3.16), to rewrite the terms involving 
electrical variables (i.e. first and two last terms) in the form 

1 2  
2 2 

1 2 A A  A A A  

Of course only changes of P:' and M:' appear explicitly, as only these give rise to 
entropy production, but changes of reversible Pb' and Mbr do not. 

7. Conclusions 

A phenomenological theory for a quasineutral conducting, polarisable and magnetis- 
able N-component dissipative fluid mixture whose equations form a hyperbolic system 
is proposed. These equations are similar in many respects to Grads' approximation of 
the kinetic theory of a plasma (cf KranyS and Teichmann (1974)), but they describe, in 
addition, the particles internal degrees of freedom (associated with polarisation and 
magnetisation) and also bulk viscosity effects which kinetic theory is hardly able to 
describe. The non-stationary transport equations for dissipative fluxes containing new 
cross-effect terms and possessing certain symmetries, as required for compatibility with 
the entropy principle expressed by the new balance equation (including a new Gibbs 
equation) including second-order terms, have been deduced in order to guarantee 
physical causality and the possibility of describing fast transient processes. The theory 
formed by the set of (13N+7)  partial differential equations (with some auxiliary 
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equations) governing the material behaviour of the system, generalising the constitutive 
equations (5.6), together with six field-governing Maxwell’s equations (with two 
auxiliary conditions) may be referred to as phenomenological electrodynamics of 
dissipative quasineutral fluid media. It is shown how the new transport equations for 
I”‘, M” and Q” reduce, under special conditions, to the well-known polarisability 
formulae, Debye’s laws and Ohm’s law respectively. In many cases the simple Debye 
formula for the susceptibility (uncoupled from thermodynamics) failed to fit the data 
satisfactorily and therefore attempts were made to improve it in different ways (cf 
Brown (1956) 0 65). These attempts seem to us to be rather a computational patch- 
work. Apart from this, Debye’s and Lorentz’s formulae for susceptibility were unified 
at the level of Boltzmann statistics by Van Vleck and Weisskopf (1945) (=revised 
Lorentz’s theory) in the sense that the effect of collisions (i.e. dissipation) gives a 
compatible dispersion and absorption in both the resonant (Lorentz) and non-resonant 
(Debye) cases. 

Our new equations describing a polarisation dynamics show a relaxation similar to a 
simple Debye law (in which relaxation is supposed to be due to rotational friction only) 
and, besides that, also the dependence on temperature and density gradients. Presum- 
ably, the dissipative effects are formally more completely described by our theory 
(based on non-stationary thermodynamics) than in the revised Lorentz or Debye 
theory, while for the reversible effects of polarisation the statistical approach of a 
revised Lorentz theory allows to give a detailed (microscopic) description of suscep- 
tibility which is beyond the scope of the thermodynamic approach. The corrections to 
the susceptibility formulae are expected to be experimentally observed, especially in 
the microwave region. 

From the thermodynamic functions involved in the first and second principles the 
remaining thermodynamic functions in the non-stationary version are established too. 
(See appendix 1.) 

This paper (under No 94) was presented at the 11th Rarefied Gas Dynamics 
Symposium, Cannes July 3-8 1978. 
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Appendix 1: Other thermodynamical functions in non-stationary theory 

Relations between overall and partial specific quantities for entropy, internal energy, 
free energy, and pressure are 

where c = g / p  and zi= 1. By integration of the general Gibbs equation (2.18), 
keeping constant all reversible natural variables U (or T ) ,  v, 5, PA and MA, one finds 
easily the same result as would follow directly from (2.16) and (2.14) i.e. s = s*+s+ or, 

A 
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written for each specific partial entropy, and using equation ( A l . l )  

1 1  
S+ E s - s - -- [ - (GQ'Q' + . 
A A A*- 2T c A A A  

(A1.2) 
A 

In reversible thermodynamics one introduces the free energy f* and Gibbs function G,: 

(A1.3) 

where only quantities characterising reversible changes are involved. These definitions 
and even the complete Gibbs equation are formally taken over, and supposed to be 
valid also in traditional non-equilibrium thermodynamics which is stationary, since it 
neglects, among other things, the inertial effects of dissipative fluxes. This cannot be 
done at the level of our non-stationary theory, as is evident from relation (A1.2). We 
may generatize relations (A1.3) by defining the free energy f and Gibbs function G in 
terms of quantities characterising general (not only reversible) changes: 

f " U  -Ts = f*+f+; f+ U +  - Ts+, (A1 -4) 
G e U + ( p  + T ) V  - TS = G, + G+; G + ~ u + + T v - T s + ,  (A1.5) 

where f.+ and G, are defined by (A1.3), U = U* + U +  and where s+ is given by equation 
(2.16). For example, from equations (A1.5) and ( A l . l )  we find 

f* = U* - Ts,, G* = U* +PV - Ts,, 

and structure also the generalised chemical potentials 

(A1.6) 

where s+ is given by equation (A1.2) and where 
A 

(A1.9) 

p") is the re.versible polarisation independent part of the chemical potential which is 
entirely O(O), while is dependent on polarisation contributions or field. In 
equation (A1.7) p-p* =<+ is O(2) (as well as %-1;4("). This is the reason why 
formulae (2.18) or (2.19), where only O(2) terms are included, cannot involve the 
non-stationary corrections s+ or p+. (Only the first non-stationary term in (A1.7) 

is known (cf de Groot and Mazur (1962) equation 111, 37).) 
We can easily find also the non-stationary Gibbs-Duhem equation. Differentiating 

the defining relation (A1.5) and substituting for du + p  dv - T ds the expression which 
follows from the Gibbs equation (2.18) (keeping terms up to O(2) only) we obtain 

A 

A A  

A A 

c dw = v (dp +dT)  -s(O) d T  + v(E" dPb' + B" d M t )  + v(AP:' dP:' +AM:' dM:') 
S A  A 

(A1.10) 
+ r r d v + d u + + ~ ( G ~ ' d ~ ' + ~ ~ ' d ~ ' + .  A A A  *+lCzdz) .  
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or 

+ u ( E " d P ~ + A P : ' d P ~ ) + .  * (Al .  1 1) 

which is compatible with (A1.7) within O(2) terms dd0 '  =: dg/Z-i"' dT). i 
Appendix 2: Illustrative example 

In the following illustrative example we want to show how non-stationary ther- 
modynamics, which is especially well suited to rapidly time varying electromagnetic 
phenomena, might be incorporated in a description of microwaves or even optical range 
waves in dissipative media. Let us take a two-fluid model without viscosity, heat 
conduction and magnetisation (i.e. rk' = 7~ = h' = M '  = 0, B = constant). Suppose that 
U', B', E' and P' disappear at equilibrium, i.e. are O(1). The completely linearised 
system, where only the terms up to O(1) are considered in the material governing 
equations ((1.7), (1.Q (3.1), (6.3) and (3.21)), reads 

A A A  

p -+p-- = 3 O, 
av ' &?-+a$ = 0, aP 1 1 - + a v  =o ,  

at at 
(A2.1) 

ap: I 1 P TP-+P+ - E O K E  = E ~ K - ~ ~ T .  (A2.2) at T 

On the other hand, we deduce, from Maxwell's equations (5.3) to ( 5 . 5 )  subject to 
conditions d'P' = 0 (cf equation (3.4)) PA = E ~ K ~ E '  (cf equations (2.3) and (1.6)) and 
p ' = O  

(A2.3) 

As equations (A2.1) contain no electrical variables like J ' ,  P: or E', they can be solved 
separately (if appropriate state equations are given) and the same applies to the 
remaining electrodynamic equations (A2.2) and (A2.3) where terms containing $6 and 
a'T have to be considered as a given driving source determined by the mechanical 
equations. The solution of equations (A2.1) represents the well-known adiabatic 
acoustical wave accompanying the damped electromagnetic wave, whose propo- 
pagation mode can be found by the standard techniques for plane wave propagation. 
Such an approximation is close to the standard approximation utilised in optics, where 
the mechanical and thermodynamic processes accompanying an electrical wave are 
completely neglected. However, in the general case, the cross-effect terms will prevent 
the separation of the mechanical problem from the electrodynamic problem and will 
involve the whole thermodynamics in a consideration of electromagnetic phenomena in 
dissipative matter. 

Note added in proof. In the light of the author's recent studies, the present formulation can be improved in the 
following way. 

(1) Instead of internal energy U ( =  u l )  defined by the first law, expressed by equation (2.1), as a function of 
independent variables (T, v,  P", M")  it is more convenient to choose another definition, namely 

U* = u1- o(P"E" +M"B") (A3.1) and dU2 = dul  - o(E"dP" + P ' d E "  + . . .). 
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Equation (2.1) then reads p i z + ,  . . = , , , -(P"k" +M"B") .  This Legendre transformation (A3.1) results in 
exchanging state variables (P", MI')  for (E", B"). So uz = uz(T, U, E", B"). 

(2) We need to know the explicit dependence of the U on the electromagnetic quantities, which is 

u ' , ~ =  C ( U ,  T ) * ~ u ( P " E " + M " B " ) ~ ~ ~ , ~ * + u ~ , ~ + .  (A3.2) 

Recalling (1.6), we have also 

u ~ , ~ *  = 6 i & ( P t E " + M t B ' ) ;  = &(P:'E''+M:'B''), dU1,z+/dr = &(P:'E-''+M:'B'). 
(A3.3) 

This cannot be obtained from (2.1) but from the energy balance equation showing explicitly all electromag- 
netic terms (see Krany's (1979) equation (3.13)). 

(3) In 5"', as given by (2.20), it is necessary to replace i :  and y!+ by the P:' and M:' respectively. 
(4) Since in (2.14) there is the sum of three separate invariant terms involvingpolar vectors $, P:' and g', 

a more general unified invariant expression can be constructed from them. The same applies in forming the 
invariant expression (3.23). 

(5) If one limits the form of the constitutive relations PA' = PA'( T, U, Elk, B'k) ,  MA' =MA'( T, U, Elk,  B'k) 
only to (2.3) the pyro-, piezo-electric and gyrotropic effects are excluded. 

Taking into account the points ( l ) ,  (2), (3) and ( 5 ) ,  we can derive transport equations similar to 
(3.6)-(3.11). Equations (3.6) and (3.7) remain unchanged, in (3.8) and (3.9) one has to replace i: and y :  by 
P:' and MY, while (3.10) takes the form 

(A3.4) 

where 2K+Eo = A-' ,  T~ = A .  C', and similarly for equation (3.11). One notices that the leading term $E'' 
has its origin in U2+. In contrast to the transport equations (3.6)-(3.11) the new system is hyperbolic without 
additional requirements like (3.13), and shows the coupling of shear and bulk viscosity with polarisation and 
magnetisation. The Debye law as given by (A3.4) (as well as the definition of u2 (A3.2)) is in conformity to 
that given by Dixon (1978) p 238, which contains also the coupling term with heat flux. Such a term we can 
obtain as well, if point (4) is respected. This, together with the formulae for general linear constitutive 
equations for P t  and M t  free of the limitation mentioned in point (5),  are given in the author's 'Relativistic 
electrodynamics' (Can. J. Phys. submitted for publication). 

For completeness we given the list of replacements in the formulae resulting from the changes specified in 
points (l), (Z), and (3). 
In equations 

(2.1) and (3.1): 

(2.5)-(2.7) and (2.13): 

(2.8), (2.9) and (2.18): 

(2.10) and (2.12): 

(2.11): 

(2.191, (3.3)-(3.5), 
(3.8)-(3,11), (3.231, (6.5): 

(3.10) and (3.11): 

(3.16) reads: 

(6.5): 

(A1.lO) and (Al.11): 

Y++M+; 

P+ + P+, B + -iB, M+ + M+; 
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